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Abstract
Surface magic clusters (SMC) are clusters exhibiting enhanced stability at
certain sizes on a particular surface. Through the formation of SMC, it
is possible to grow an ensemble of nanostructures on a particular surface
with extremely narrow size dispersion. Such monodispersed nanostructures
are highly desirable for the realization of some emerging nanotechnology.
This review summarizes the recent experimental observations and current
theoretical understanding of SMC and discusses the possibility of exploiting the
formation of such unusual clusters as a pathway to the growth of monodispersed
nanostructures on surfaces.

1. Introduction

Due to their fundamental interest and almost unlimited potential applications, nanostructures
have become a class of objects intensively studied by scientists and engineers around the
world. It is very likely that this intensive effort will continue until the fabrication of nano-
structures with atomic scale precision can be performed routinely. One of the most important
steps towards this ‘ultimate fabrication’ is that of being able to control the number and
configuration of all the atoms in the desired nanostructures as well as their environment.
Although lithographic techniques based on photon, electron or ion beams have been employed
for the fabrication of structures with ∼10 nm lateral resolution, the intrinsic limitations of these
so called ‘top-down’ fabrication techniques appear increasingly insurmountable as the lateral
dimension of the desired nanostructure becomes smaller [1]. Recent employment of scanning
probe microscopes (SPM) as lithographic tools has revealed exciting possibilities for atom
manipulation [2, 3]. However, the intrinsic slow speed of such serial writing methods presents
serious challenges to the researchers who are attempting to develop SPM-based lithography
into a practical technology. An alternative ‘bottom-up’ approach, based on self-assembly of
nanostructures from their constituent atoms or molecules, is conceptually attractive because
of its intrinsic parallel-processing nature [4–7]. In principle, a large quantity of the desired
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nanostructure can be synthesized at one time. However, the size and atomic structure of such
self-assembled nanostructures still suffer from relatively large variation in most cases and the
spatial arrangements of the nanostructures are hard to control. Nanostructures with less than
a few per cent dispersion in the distribution of their linear dimensions and/or ordering in their
spatial arrangement are achieved only in a few cases [8]. Therefore, any method or concept for
improving the size or structural uniformity of nanostructures, or the precision in their spatial
arrangement, is important for the realization of the emerging nanotechnology.

Because of their precise control over the amount of deposited material, vacuum thin-
film deposition techniques such as molecular beam epitaxy (MBE) [9] and cluster deposition
[10, 11] have been employed for the growth of nanostructures on surfaces. By controlling
the deposition flux, temperature and time as well as the post-deposition annealing procedure,
these techniques can set the mean size (Savg) of some desired nanostructures approximately
at a certain desired value. For clarity and consistency, we define the size of a nanostructure as
its total number of atoms rather than its characteristic linear dimension as adopted by many
authors. The size dispersion �S (full width at half-maximum in the size distribution curve)
of nanostructures fabricated by deposition of materials onto surfaces is usually larger than
Savg/2. Significant reduction in�S for some nanostructures has been demonstrated in certain
systems by exploiting the strain on the substrate surface or in the nanostructures [12–14].
Nevertheless, the values of�S/Savg are still larger than desired for many fundamental studies
and technological applications. Therefore, developing methods for effectively reducing �S
remains one of the most important issues for the fabrication of nanostructures on surfaces.

Magic clusters in free space have been known of for almost two decades [15, 16]. Their
enhanced stability at certain sizes originates from either the electronic or atomic shell closure.
Intuitively, it would seem that such especially stable clusters could be exploited for the growth
of nanostructures on surfaces with narrow size dispersion. However, the shell closure of
a magic cluster is hard to maintain during the landing on a surface because of the usually
strong cluster–surface interaction. Although the loss of the special stability could in principle
be avoided by careful selection of the cluster–surface combination [17], the SMC [18–20]
discovered recently were formed via the self-assembly of adsorbed atoms (adatoms) rather
than deposition of free magic clusters onto surfaces. These discoveries have raised interesting
basic questions regarding the origin of the enhanced stability of SMC as well as practical
issues regarding their potential applications. Although the research on this subject is still in
its infancy, the formation of SMC appears to suggest a potential new pathway to the growth of
monodispersed nanostructures with well-defined atomic configurations on a particular surface.
In this review, we provide a brief summary of the highlights of the experimental observations
and theoretical understanding of SMC, and attempt to point out some issues concerning the
formation of SMC as a pathway to the fabrication of monodispersed nanostructure surfaces.

2. Experimental observations of SMC

Although speculations about the existence of magic clusters on surfaces were raised in a paper
in 1992, which was based on a study of the Pt/Pt(111) surface using He scattering [21], no
SMC were found in the later scanning tunnelling microscopy (STM) study of this surface [22].
The first demonstration of surface clusters exhibiting enhanced stability and abundance had to
wait for several years until SMC were directly observed on the

√
3 × √

3R30◦-reconstructed
Ga/Si(111) surface [18, 23]. Soon after this work, Si islands with magic numbers of unit cells
on the Si(111) 7 × 7 surface were reported [19]. This was then followed by the observation of
a type of Si magic cluster on Si(111) [20]. In this section, we review the highlights of these
pioneering experiments and their implications for the formation of SMC on other systems.
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2.1. Ga/Si(111)

The Ga/Si(111) surface has been studied extensively since the 1980s [24–31]; however, SMC
have never been observed in this system. The early studies of Ga-induced reconstruction of the
Si(111) surface led to two important observations. First, deposition of ∼1/3 monolayer (ML)
(1 ML = 7.83×1014 Ga cm−2) of Ga and subsequent annealing at ∼550 ◦C led to the formation
of a

√
3 ×√

3R30◦-reconstructed surface lattice (henceforth referred to as the adatom lattice).
Detailed STM and x-ray standing-wave (XSW) examinations [31] unambiguously determined
that the position of the Ga is on the fourfold-coordinated site (T4), rather than the threefold
hollow site (H3) that was once intuitively assigned as the more stable position. It is to be noted
that the STM image of the

√
3 × √

3R30◦-reconstructed Ga/Si(111) surface exhibits a mosaic
pattern as shown in figure 1, indicating that the atoms occupying the T4 sites are a mixture
of Ga and Si. The contrast of the image reverses with the change in the polarity of the tip
bias. Qualitatively, a Si atom at a T4 site appears brighter in the filled-state (positive-tip-bias)
image as expected, because it has one remaining dangling bond. Similar mosaic patterns
have been observed on the Al-induced

√
3×√

3R30◦-reconstructed Si(111) surface [32]. The
coexistence of Ga and Si at the T4 sites is also consistent with the fact that ∼1/6 ML, rather
than 1/3 ML, of Ga is enough to induce the

√
3×√

3R30◦ reconstruction. As will be explained
later, the existence of Si adatoms at T4 sites turns out to be an important factor in the formation
of SMC on the Ga/Si(111) surface. The second important observation is that the deposition
of ∼1 ML of Ga and subsequent annealing at 300–500 ◦C result in the formation of quasi-
ordered layers of hexagonally close-packed aggregates, referred to as supercells (superlattice
unit cells) [28]. These supercells with the lateral dimension of 2.4 nm were identified with the
6.3 × 6.3 incommensurate structure originally observed by means of reflection high-energy
electron diffraction (RHEED) [24]. Detailed XSW studies indicated that, for the 6.3 × 6.3
incommensurate structure, Ga substitutes for Si in the outer half of the Si(111) bilayer at the
surface and forms a graphite-like Ga–Si bilayer [27].

Figure 1. STM images of
√

3 × √
3R30◦-reconstructed Si(111) surface induced by ∼0.2 ML of

Ga deposition showing a mosaic pattern (size = 8.5 nm ×13 nm). (a) Empty state (Vtip = −2.3 V,
It = 1.8 nA); (b) filled state (Vtip = 2.3 V, It = 1.0 nA). Note the contrast reversal between (a)
and (b).

In retrospect, we think that SMC were not observed in the Ga/Si(111) system in the
previous studies because of the inadequate Ga deposition and thermal processes, in which the
total amount of Ga was always deposited in a single step onto the Si(111) surface while the
sample was held at low (25 ◦C) or high (350 ◦C–550 ◦C) temperatures. For low-temperature
depositions, samples were post-annealed at high temperatures in order to achieve the ordered
or quasi-periodic reconstruction of the surface. Such a single-step deposition process tends
to convolute many complicated atomic processes and hamper a detailed observation of the
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initial cluster formation process. In the experiment leading to the first observation of SMC,
the Ga was deposited using a two-step process. First, ∼1/3 ML of Ga was deposited onto
the Si(111) substrate at room temperature and the sample was annealed at 550 ◦C for ∼10 s
to achieve a uniform

√
3 × √

3R30◦-reconstructed surface. Then, an additional ∼1/6 ML of
Ga was deposited again at room temperature and followed by a series of annealings (∼10 s)
at temperatures between 100 and 300 ◦C. After the second Ga deposition and prior to the
annealing, vacancies and irregular droplets were formed on the adatom lattice simultaneously
as shown in figure 2. Annealing of the sample at ∼200 ◦C led to the healing of the adatom
lattice as well as the formation of ordered clusters and incommensurate islands [23], as shown
by the typical filled- and empty-state STM images in figures 3(a) and 3(b) respectively. The
circled clusters in the figures are examples of the most abundant SMC.

Figure 2. A STM empty-state image of Ga-induced droplets and vacancies formed on a√
3 × √

3R30◦-reconstructed Ga/Si(111) surface after ∼1/6 ML of Ga was deposited (Vtip =
−2.1 V, It = 1.6 nA, size = 40 nm × 40 nm).

Figure 4 shows the histogram of the clusters on the Ga/Si(111) surface prepared by
the process described above. There were four species exhibiting enhanced abundance and
therefore stability. These similar triangular clusters had n (2, 3, 4 or 5) atoms on their sides.
The most abundant species was the n = 4 clusters, which made up ∼50% of the number of
counted clusters and covered ∼2% of the surface area. (Depending on variations in the sample
preparation process, particularly the Si concentration in the original

√
3 × √

3R30◦ adatom
lattice and the additional Ga dosage, the area coverage of the n = 4 clusters can be increased
by a factor of two to three.) The other three more abundant species appeared primarily on the
boundary of the three degenerate

√
3×√

3R30◦ domains and areas with higher concentrations
of defects on the adatom lattice. Due to the discrete nature of cluster size, the conventional
definition of size dispersion is not adequate for describing the spread of the size distribution
of the clusters. The n = 4 SMC in this system have the same size as well as atomic structure,
and their value of �S is essentially zero.
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Figure 3. (a) Filled-state (Vtip = 1.6 V, It = 1.8 nA) and (b) empty-state (Vtip = −1.6 V,
It = 1.8 nA) STM images (size = 29.2 nm × 27.7 nm) of Ga-induced magic clusters within the√

3 × √
3R30◦-reconstructed Ga/Si(111) surface.

The atomic structures of the n = 4 clusters were partially revealed by the atomic resolution
STM images and the corresponding tip-height profiles shown in figure 5. The centre atom is
exactly above a T4 site belonging to the original adatom lattice and the three vertex atoms
also appear to be above the original T4 sites of the adatom lattice, but with slight (∼0.11 nm)
outward deviation. The six edge atoms are approximately above the degenerate T4 sites
that do not belong to the original adatom lattice, and also with some (∼0.07 nm) outward
deviation. Collectively, the lateral positions of the ten observed atoms of this cluster assume



R594 Y L Wang and M Y Lai

Figure 4. The histogram of the clusters within the
√

3×√
3R30◦-reconstructed Ga/Si(111) surface

showing the existence of magic numbers. The statistics are derived from many atomically resolved
STM images covering ∼(140 nm)2.

an approximate 1 × 1 construction with respect to the underlying Si(111) surface. Although
STM tip-height profiles do not usually provide accurate measurements of the heights of the
surface atoms, they can still provide some rough estimates. As measured from the empty-state
and filled-state tip-height profiles across the cluster, the centre atom appears to be higher than
its surrounding adatoms by ∼0.07 nm (profile A) and ∼0.12 nm (profile C), respectively. The
empty-state profile also shows that the vertex atoms appear to be at the same level as the
adatoms. A distinct feature of the surroundings of this cluster is to be noted: three adatoms are
missing from its surrounding adatom lattice, as indicated by the triangles in figure 5(a). This
characteristic vacancy pattern provides a signature for relating the SMCs to the larger clusters
and incommensurate islands.

Figure 6(a) shows an example of an incommensurate island separated by dislocation
into three domains. In each domain, the atoms appear to be above T4 sites and assume an
approximate 1 × 1 structure. The profile A of figure 6(b) shows that the interior atoms of
the island appear to be ∼0.07 nm higher than the adatoms while the edge atoms appear to be
at approximately the same level as the adatoms. As marked by the triangles in figure 6(a),
the island’s surrounding adatom lattice exhibits a vacancy pattern similar to that observed
around the n = 4 SMC. The above structural similarities suggest that this island would be
categorized as a SMC with n = 10, provided that its dislocations were ignored. The presence
of dislocations on this island and other larger incommensurate islands with similar structure
[23] indicates that the lattice constants of the Ga-induced clusters and islands are mismatched
with the Si(111) surface. As their lateral dimensions grow beyond a certain limit (5–7 lattice
units in this system), elastic strain alone cannot cope with the stress and dislocations are created
to reduce the stress.

The thermodynamic stability of the SMC was studied by in situ STM imaging at elevated
temperatures. During a prolonged (3.5 h) observation at ∼350 ◦C, no diffusion of the n = 4
clusters was observed. However, 24 out of 137 clusters disappeared from the imaged area. At
the same time, noticeable growth of some islands occurred. Figures 7(a) and 7(b) show an
example in which two magic clusters (n = 4) disappeared and two islands merged between
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Figure 5. Detailed empty-state (a) and filled-state (c) images (size = 3.3 nm × 2.8 nm) of an
n = 4 SMC within the

√
3 × √

3R30◦-reconstructed Ga/Si(111) surface. Triangles indicate the
positions of the characteristic vacancies on the surrounding adatom lattice. The tip-height profiles
along the three lines indicated are shown in (b).

the two imaging scans separated by 3.5 h. These observations indicate that, when annealed
at temperatures beyond ∼350 ◦C, even the most abundant and stable n = 4 clusters show a
significant chance of disintegration. This instability at temperatures above 350 ◦C could be
one of the reasons that such SMC escaped the detection of most previous studies in which Ga
atoms were usually deposited or annealed at higher temperatures.

2.2. Si magic islands on Si(111)

Homoepitaxy on the Si(111) surface has been extensively studied using various techniques
for decades. In particular, the growth of Si on this surface has been a subject under intensive
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Figure 6. (a) An empty-state image (Vtip = −2.5 V, It = 2.1 nA, size = 6.0 nm × 6.3 nm)
of a small incommensurate island within the

√
3 × √

3R30◦-reconstructed Ga/Si(111) surface.
Triangles indicate the positions of the characteristic vacancies on the surrounding adatom lattice.
(b) Tip-height profiles along the two lines indicated in (a).

investigation since the invention of STM. However, the magic size effect in the islands formed
by the deposition of Si was not observed until recently. Again, we will try to recap on the
highlights of this experiment and point out the important experimental factors leading to the
observation of magic islands in this system.

The key to the successful observation of the magic islands on the Si(111) surface during
Si homoepitaxy was the employment of a beetle-type STM in this experiment [33]. The
open design of the STM allowed the molecular beam from a Si evaporator to be directed
towards the sample while the STM was scanning the growing film. The experiment showed
that, during submonolayer (one monolayer or 1 ML was defined as 1.56 × 1015 atoms cm−2

in this experiment) growth of Si on Si(111), two-dimensional (2D) islands with Si bilayer
thickness (0.31 nm) were formed on the surface. The shape of the islands is triangular,
indicating kinetically limited growth shape evolving during growth. Equilibration of these
islands without external flux resulted in a transition to a hexagonal equilibrium form [34].
Figure 8(a) shows the Si island size distribution after the deposition of 7% of an atomic layer
(sample temperature 725 K, deposition rate 0.5 ML min−1). The size of the islands is plotted
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Figure 7. In situ STM images showing the disappearance (small circles) of n = 4 SMC and
merging of islands (large circles) within the

√
3 × √

3R30◦-reconstructed Ga/Si(111) surface at
350 ◦C; image (b) was taken 3.5 h after (a).

in units of half a unit cell (HUC) of the well-known Si(111) (7×7)-reconstructed surface [35].
Several peaks are observed in the distribution of figure 8(a). The particularly narrow peak at
a size of 4 HUC has a �S/Savg of ∼1/4 if �S is taken as the full width at half-maximum of
the peak.

The observed multiple-peak shape of the island size distribution is quite different from
the island size distributions with only one broad maximum observed experimentally for other
systems. The typical single-peaked distribution can be explained by assuming that island
growth is limited only by the number of adatoms deposited in a ‘capture zone’ closer to this
island than to other islands. The island size distribution is thus similar to the distribution
of Voronoi polygons around the islands [36, 37]. Kinetic constraints due to the barriers
to attachment of adatoms to the islands on the Si(111) substrate completely change this
simple picture.

From a sequence of STM images recording the growth of a selected island as a function
of time, as shown in figure 9(a)–9(f ), one gets a deeper understanding of the growth kinetics
leading to the formation of the Si magic islands. At the beginning of the sequence, as shown in
figure 9(a), the shape of the island is a perfect triangle. Later on, as shown in figures 9(b)–9(d),
the island has grown by advancement of a row of a certain width along the right island edge.
The positions of the kinks at which the row ends are indicated by the arrows in figures 9(b)–
9(d). An analysis of the width of this row and further atomically resolved images showed that
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Figure 8. (a) Experimentally observed island size distribution of two-dimensional Si islands grown
epitaxially on Si(111) at 7% surface coverage. The distribution consists of several peaks at magic
sizes. The size is expressed in half unit cells of the 7 × 7 reconstruction unit cell. A STM image
of the triangular islands is shown in the inset (200 × 300 nm2). (b) Island size distribution and the
surface morphology (a 100 × 120 part of a 400 × 400 lattice is shown in the inset) observed in
kinetic Monte Carlo (KMC) simulations. This figure is reproduced from [19] with permission.

the width of such a row is 2.7 nm, which is just the width of one 7 × 7 reconstruction unit cell.
Figure 9(f ) shows the completion of a larger ‘perfect triangle’ towards the end of the growth
sequence.

To qualitatively explain the unusual growth kinetics, Voigtländer et al [19] suggested that
the reconstruction of the surface area surrounding the islands must have played a crucial role
in the growth kinetics. Their argument was based on the fact that both the islands and their
surrounding surface are made of rhombic 7 × 7 unit cells that each consist of two triangles.
One of these triangles has a stacking fault in the surface layers relative to the substrate stacking
(F-HUC) while the other is unfaulted relative to the substrate (U-HUC). During lateral growth
of an island, the reconstruction of the surrounding surface area has to be lifted and the substrate
atoms have to rearrange to match the bulk structure. It is reasonable to expect different energy
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Figure 9. A sequence of images showing the lateral growth of a triangular Si(111) island. A row
of the width of the 7 × 7 unit cell is growing along the right edge of the island in (b)–(f ). The
image size is 50 × 50 nm2; T = 575 K. This figure is reproduced from [19] with permission.

barriers for lifting the reconstruction of the U triangle as compared to the F triangle [38]. For
the former, only atoms in the uppermost adatom layer have to rearrange. This is associated
with a relatively low energy barrier. For the latter, removal of the stacking fault in the layer
below the adatoms is needed and therefore requires a larger energy [35]. This should lead
to a high activation barrier for overgrowth on the F triangle compared to overgrowth on the
U triangle. For perfect triangular islands, i.e., magic islands, areas along the islands’ edge
are covered by F triangles. Therefore, further lateral growth of magic islands is hindered by
the requirement to grow over F triangles with the higher energy barrier. Once an F triangle
has nucleated, the neighbouring U triangles can be overgrown more easily (no stacking fault
has to be removed). The overgrowth of the next F triangle is facilitated by the existence of
a ‘macro-kink’ (arrows in figure 9). Here the cost of the stacking fault energy is reduced by
a gain in the island edge energy: the edge length is reduced after growth of an F triangle.
Therefore, neighbouring U and F units can be overgrown in quick succession, leading to the
fast growth of a stripe of the width of the 7 × 7 unit cell. The result of a KMC simulation
shows quantitatively very similar island size distribution with pronounced peaks as shown in
figure 8(b), and qualitatively very similar growth kinetics, as indicated by the sudden jumps
indicated in the evolution of the island size shown in figure 10.
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Figure 10. Kinetic Monte Carlo (KMC) and STM results for the evolution of a single island size
as a function of time. After rapid growth of rows, longer times without further growth result in
plateaus in the time evolution. These plateaus occur just at the magic sizes of perfectly triangular
islands. This figure is reproduced from [19] with permission.

In comparison with the SMC in the Ga/Si(111) system, the Si magic island formation
on the Si(111) surface has the interesting difference that the triangular shape of the islands
is the result of kinetically limited growth. Specifically, the equilibrium shape of the islands
at 725 K without the presence of an external Si flux is hexagonal rather than triangular [39].
Such a kinetic magic size effect is different from the thermodynamic magic size effect in the
Ga/Si(111) system, where the Ga-induced magic clusters were formed after the sample was
annealed at elevated temperatures. Prolonged annealing without the presence of external Ga
flux at the formation temperature did not change the structure of the magic clusters, indicating
that the SMC of the Ga/Si (111) system are thermodynamically stable.

2.3. Si magic clusters on Si(111)

On deliberately quenching a Si(111) sample from 600 ◦C to room temperature, clusters of the
type shown by the examples in figures 11(a) and 11(b) were formed most abundantly on the
(7 × 7)-reconstructed surface [20]. The concentration of such Si SMC was typically of the
order of ∼0.01 per 7 × 7 unit cell, but higher concentrations can be achieved by quenching
at a faster rate [40]. On samples that were cooled down very slowly, only few clusters were
observed. Figure 11(a) shows the filled-state image of two clusters, whose centres appear to
be ∼1.5 Å higher than the Si adatoms of the 7×7 surface. Figure 11(b) shows the empty-state
image of a cluster exhibiting a ring-like structure that consists of six protrusions. Depending
on the tip condition, three of the protrusions sometimes appeared brighter as in the case of
figure 11(b), and sometimes all of the six protrusions exhibited nearly equal brightness. The
solid triangles in figure 11(c) mark the positions of the six protrusions seen in figure 11(b)
with respect to the atomic model for the Si(111) 7 × 7 reconstruction [35]. The lateral spacing
between the protrusions is ∼3.8 Å, which is much larger than the Si–Si bond length (2.33 Å)
in the bulk Si lattice. In view of this, Hwang [40] suggested that such a SMC contains more
than six Si atoms. On the basis of the observation of dynamic behaviour of the clusters at step
edges, which is to be described later, the magic number is estimated to be between 9 and 15.
Although the precise number of atoms and the atomic structure of the magic cluster are yet to
be determined, there is probably only one kind of SMC with a definitive magic number rather
than several different kinds of SMC in this system [40].
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Figure 11. (a) A STM image of two Si magic clusters taken at the sample bias of −1.5 V. (b) An
image of another Si magic cluster taken at the sample bias of +1.2 V with a different tip. (c) A model
with six protrusions of the cluster seen in (b) marked with triangles. This figure is reproduced from
[20] with permission.

The Si magic clusters can withstand temperatures up to 600 ◦C, but hopping of the clusters
occurs too rapidly to be followed by continuous STM scanning at such a high temperature. By
measuring the rates for hopping within and out of a faulted or unfaulted HUC at temperatures
ranging from 430 to 500 ◦C, the activation energies and the pre-exponential factors for the
hopping motion are determined using the Arrhenius plots shown in figure 12. The activation
energies are close to the Si–Si bond strength (∼2 eV) in the bulk. Considering that the cluster
may interact with two rest-atom dangling bonds and three Si adatoms in a HUC of the Si(111)
(see figure 11(c)), the activation energies for these hopping processes are surprisingly small.
Presumably the Si atoms in the clusters are tightly bound; thus their interaction with the
substrate is weakened. Hence, Hwang et al [20] suggested that a Si SMC diffuses on the
surface as a ‘unit’ with some rather small ‘activation energy’. It is not clear, at this point,
what the measured ‘activation energy’ really means, because the apparent hopping of a cluster
between two consecutive STM images could be the result of many types of atomic process
including dissociation and recombination of atoms. Whether or not the SMC actually ‘diffuses’
as a ‘unit’ poses an interesting and challenging fundamental question to both experimentalists
and theorists.

Above certain temperatures, the Si SMC are thermodynamically more stable than small
bilayer Si islands. When an island decays below a threshold size, it suddenly decomposes into
several Si magic clusters. For example, the 5 × 5 island in figure 13(a) was the smallest stable
bilayer island observed at 460 ◦C. Note that there is a disordered unfaulted region around the
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Figure 12. (a) and (b) show Arrhenius plots for the hopping within and out of the faulted and
unfaulted half cells, respectively. This figure is reproduced from [20] with permission.

island. It resulted from the decay of a larger island. As time proceeded, the 5×5 island further
decomposed into five clusters in the disordered region as shown in figure 13(b). The number of
clusters decreased with time (through escaping to the 7 × 7 region), and the disordered region
shrank in size as shown in figures 13(c) and 13(d). Eventually, all clusters disappeared from
the imaged region and the disordered area was converted into a perfect 7 × 7 reconstruction.
Similar decomposition of bilayer structures and formation of SMC also take place along the
step edges of the Si(111) surface at the temperature of ∼450 ◦C, leading to the fluctuation of
the step edges. (By measuring the Si bilayer area disappearing from a step edge and the number
of clusters observed in its neighbourhood, the magic number of the cluster was estimated to
be between 9 and 15. Such an estimate should be treated with some caution. It tends to be
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Figure 13. A sequence of STM images showing the decomposition of a 5 × 5 island, taken at the
sample bias of −1.5 V. Adatoms in the disordered region (outlined by white lines) are usually very
mobile. However, they are less mobile at the outer corner of this region and have a better chance
of being seen. This figure is reproduced from [20] with permission.

an overestimate of the size of the clusters because monomers escaping from the region are
not detected by the STM imaging.) These observations suggest that the formation energy
of the Si SMC and those of the 7 × 7 and 5 × 5 bilayer structures are almost equal in this
temperature range.

On cooling samples from 900 ◦C at a fast rate of>2 ◦C s−1, a high density of SMC formed
and they were trapped in narrow disordered regions at lower step edges and at 7 × 7 domain
boundaries, as shown in figure 14. Since the SMC have much higher mobility on 7×7 than on
the disordered regions, the chances of observing Si clusters as well as their dynamic behaviour
on the disordered regions were higher. For samples quenched from temperatures above 900 ◦C,
a small concentration of SMC in 7×7 regions as well as a high density of SMC were observed
at the domain boundaries, which is similar to the observation by Yang and Williams [41] and
others. A high concentration (>0.5 per HUC) of Si SMC can also be produced by depositing
Si onto a 7 × 7 Si(111) surface at room temperature and then annealing at ∼350 ◦C [42]. This
indicates that their enhanced stability is of thermodynamic rather than kinetic origin, similar
to that of the Ga-induced SMC in the Ga/Si(111) system.

3. Theoretical understanding

Like their experimental counterparts, theoretical studies of two-dimensional (2D) magic
clusters either in free space or on surfaces are at a very early stage of development. To
our knowledge, only a few studies, some of which are to be discussed in the following, on this
subject can be found in the literature. Most of the earlier works examined the magic number of
metal clusters. Issues of concern included, for example, the change in the structural stability of
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Figure 14. A STM topograph of a surface which is cooled down at the rate ∼2 K s−1, taken at
480 ◦C and the sample bias of −1.5 V. The step edge is fluctuating at this temperature. Most of the
magic clusters are trapped at the step edge and the 7 × 7 domain boundary, indicated by the kink
of the white line. Two clusters can be seen in the 7 × 7 area. This figure is reproduced from [20]
with permission.

a Na8, which is a 3D magic cluster with an electronic closed shell in free space, as it is brought
into contact with a different surface [17]. The study found that on insulating NaCl(001) it
remains magic even at 600 K and retains its intrinsic structure. In contrast, Na8 spontaneously
collapses on the Na(110) surface, forming an epitaxial layer. In the following, highlights of
some of the theoretical works are reviewed with some emphasis on their relevance to the most
recent experiments on SMC.

3.1. Quasi-two-dimensional electron gas clusters

Using density functional theory and the so-called ‘ultimate’ jellium model [43], the shapes
of quasi-2D electron gas clusters were studied. For a completely deformable jellium, the
positive ionic background has the same density as the electrons at every point of space, the
total charge density being zero. The total energy of the cluster then consists only of the kinetic
and exchange–correlation energies of the electrons. The electronic many-body problem can
be solved using the Kohn–Sham method with the local density approximation [44]. The
ground-state structures of 2D electron clusters were computed using a plane-wave technique
that allows a shape relaxation without restrictions. Specifically, a jellium confined between
two planar, parallel surfaces of separation z0 = 3.9 au (i.e., the Wigner–Seitz radius of sodium)
were examined. By allowing shape relaxation in the (x, y) plane and solving the Kohn–Sham
equations iteratively for various forms of the initial potential, the total energies of clusters of
various shapes were calculated.

As shown in figure 15, the contours of the self-consistent electron density for quasi-2D
electron gas clusters with magic numbers of electrons are either circular or triangular in shape
[45]. A systematic study of the 2D ground-state shapes for clusters with up to 34 particles
showed that only the triangle and circle appear as closed-shell configurations, whereas other
possible shapes of high symmetry, such as a square or pentagon-shaped ground state, have
not been seen [46]. Since the sodium magic cluster with strong shell structure is known to be
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(a)

(b)

Figure 15. (a) Contours of the self-consistent densities for quasi-two-dimensional closed-shell
clusters. The lowest contour is drawn at 14% of the 2D bulk density. The diameter of the perfect
disc with N = 34 is d ∼ 33a0 (where a0 is the Bohr radius), giving the length unit in this figure.
The stars indicate isomeric states. (b) Ground-state energies per electron, E(N)/N − tz, as a
function of sizeN . Very weak shell closures are found at the magic numbers of both a disc (N = 2,
6, 12, 24, 34, . . . ) and an equilateral triangle (N = 2, 16, 12, 20, 30, . . . ) in two dimensions.
Inset: self-consistent Kohn–Sham single-particle energies for even particle number N = 4, 6, 8,
10, 12, 20, 22 and 24. The magic shell closures of the circular and triangular shapes are indicated
by arrows. This figure is reproduced from [45] with permission.



R606 Y L Wang and M Y Lai

spherical [47, 48], one would correspondingly expect the magic numbers in 2D to correspond to
circular disc shapes for the closed shells with electron numbers 2, 6, 12, 24, 34, . . .. However,
one can see that the ground states of clusters with 6 and 12 electrons are triangular, even though
these numbers are ‘magic’ for a circular disc. The triangular shape for the magic numbers 6,
12, 20 and 30 is obvious from figure 15(a). For bigger sizes the increasing surface energy,
which is larger for the triangle than for any other 2D shape, makes non-triangular shapes
energetically more favourable. But in all cases studied, the triangular shapes were found as
isomers (indicated with stars in figure 15), being only some meV higher in energy than the
ground state.

Although not directly applicable, the theoretical study of 2D electron gas clusters provided
important information about the formation of SMC. The electronic shell closures of 2D electron
gas magic clusters are very ‘weak’. That is, the ground-state energy per electron as a function of
electron number exhibits very small dips at the closed shells, of the order of a few tens of meV
for small clusters to a few meV for larger ones, as shown in figure 15(b). The relatively small
enhancements in the stability are further smeared out by the spin-induced odd–even staggering
as well as the Jahn–Teller deformation-induced lowering of the ground-state energy for the
unclosed systems with even numbers of electrons. In other words, the magic clusters for the
2D electron gas clusters are not very ‘magic’. Such weak shell closures are to be expected
for a 2D system, as the orbital degeneracy in 2D is much less pronounced than in 3D. From
an experimental point of view, such a weak shell closure certainly renders the verification of
the existence of 2D magic clusters a big challenge. If one tries to simulate the 2D electron
gas clusters by growing monovalent or divalent metal clusters on surfaces, the cluster–surface
interaction and the cluster formation temperature have to be considered carefully. For example,
a metal cluster on a non-metallic surface is likely to be rather weakly disturbed by the surface.
In this case, a 2D metal cluster will tend to assume the geometry preferred by the 2D electron
gas. According the above theoretical calculations, for clusters made of divalent elements,
triangular clusters are magic both electronically and geometrically. One would expect, for
instance, small Mg clusters on a graphite or NaCl(001) surface to prefer the triangular shape if
the number of atoms is equal to n(n+ 1)/2, where n is the number of atoms on each side of the
triangular clusters. It should be emphasized that this preference for triangular shapes is due
to the minimization of the energy of 2D electron gas in the cluster rather than the symmetry
of the surface lattice, which has fourfold rather than threefold symmetry. The verification
of such triangular 2D magic clusters on a surface without triangular symmetry remains an
experimental challenge.

3.2. Magic clusters on surfaces

Due to their intrinsic complexity, numerical calculations of the energetics and structures of
clusters on surfaces as a function of cluster size are very scarce. To our knowledge, only
the cases of Na on NaCl(100) [17], Pt on Pt(111) [49] and Ag clusters on Ag(100) [50] have
been studied systematically. Some calculations addressing the extraordinary stability of the
Ga-induced SMCs were conducted soon after their discovery. In the following, the highlights
for Ag clusters on Ag(100) and models of the SMC in the Ga/Si(111) system are reviewed
with an emphasis on their relevance to the experimental observation of SMC and implications
for the growth of monodispersed nanostructures on surfaces.

3.2.1. Agi /Ag(100). The energetics of small Agi (i < 4) clusters on Ag(100) were calculated
using the self-consistent Korringa–Kohn–Rostoker (KKR) Green’s function method in the local
density approximation and using classical molecular dynamics (CMD) simulation based on a
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many-body potential due to Finnis and Sinclair and also Sutton and Chen [51, 52]. Since the
binding energies for these small Ag clusters (ground states or isomers) calculated by the two
methods agree within ∼20%, the CMD method is believed to be reliable. Therefore, the CMD
method was used for the calculation of the binding energies of larger clusters up to i = 12,
which could not be calculated by the KKR method due to the limitation of the computing speed.
The calculated equilibrium geometries of the clusters are shown in figure 16. As expected, the
results show that clusters of i = 4 and 9, with their atomic closed-shell structure on the square
lattice of Ag(100), exhibit enhanced binding energies per atom (figure 17) and therefore 4
and 9 can be considered the magic numbers of this system. The enhancements in the binding
energy of these magic clusters are, again, of the order of a few tens of meV per atom (similar
to those of the 2D electron gas clusters), indicating that the shell closure is also relatively weak
in this case of a metal cluster on a metal surface.

Figure 16. Schematic diagrams of equilibrium geometries of Ag clusters on the Ag(100) surface.
This figure is reproduced from [50] with permission.

3.2.2. Ga/Si(111). On the basis of the STM observation of the SMC on the Ga-induced√
3 × √

3R30◦-reconstructed Si(111) surface, several atomic models for the most abundant
n = 4 cluster (decamer) were proposed. In order to verify the validity of the models, theoretical
calculations of their energetics were conducted. The first approach is to use a local orbital
density functional molecular dynamics method [53] to calculate the total energies of the three
models shown in figure 18. The common feature of the models is a Ga decamer embedded
within the surface layer of a Ga/Si(111) (

√
3 × √

3)-reconstructed surface. The problem is
to find whether model (2), which bears the highest resemblance to the STM images of the
triangular decamer, is the lowest-energy configuration. The total energies of models (1)–(3)
calculated using the single special k-point of Cunningham [54–56] for the hexagonal lattice
are −107.097 275, −107.048 681 and −106.993 055 eV/atom, respectively. Model (1) has the
lowest total energy. Models (2) and (3) have total energies of 0.215 and 0.46 eV per 1 ×1 cell,
respectively, higher than that of model (1). Therefore, model (2) should not be the structure
for the magic n = 4 cluster observed by STM.
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Figure 17. Binding energy as a function of the size of an Ag cluster on Ag(100) according to the
calculation of reference [36]. The dashed line is a least-squares fit to the total binding energy. This
figure is reproduced from [50] with permission.

Figure 18. Top and side views of the optimized surface geometry of n = 4 (decamer) models
considered in reference [53]. (a), (b) and (c) correspond to models (1), (2) and (3), respectively.
Filled circles denote the Ga adatoms. Larger and smaller open circles in the top view denote
surface and second-layer Si atoms, respectively. Open squares in (b) and (c) represent the missing
Ga adatoms of the

√
3 × √

3 surface. This figure is reproduced from [53] with permission.

A refined model for the decamer, which can be viewed as a Ga–Si bilayer embedded
within the

√
3×√

3 Ga adatom lattice (see figure 19), was proposed [23]. The cluster consists
of three and six Ga atoms on the vertices and edges of the triangle, six additional Si atoms
(which are presumably invisible under empty-state STM imaging) in the interior and a Ga atom
at the centre. The Ga atoms on the vertices and edges have unusual binding configurations.
On the inside they are bound to the additional Si atoms; while on the outside they are bound
directly to the Si surface, similarly to the adatoms. Such an unusual binding configuration for
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Figure 19. The proposed model for the magic cluster of n = 4 shown in figure 5. The lower part
shows the cross-section through the indicated region of the cluster.

the edge atoms is qualitatively consistent with the STM observation that they are only slightly
higher than the surrounding adatoms. The six additional Si atoms in the interior are located
at the atop sites of the Si(111) surface and act as a medium for connecting the Ga atoms in
the clusters. Although STM observations have never directly revealed the existence of these
additional Si atoms, their presence could better explain the large nearest-neighbour distance
(∼0.41 nm) among the atoms of the clusters observed by STM. The Ga atom at the centre is
bound to three of six additional Si atoms. It is at the faulted substitutional site belonging to the
outer half of the Ga–Si bilayer. Semi-quantitatively, its uniquely higher position is consistent
with the observed STM topography.

The proposed model for the n = 4 cluster has some characteristics worth noting. First,
since all the bonds of its constituent atoms are completely saturated, it can naturally account for
the cluster’s enhanced stability and orientation preference. Second, the characteristic vacancy
pattern in the surrounding adatom lattice can be rationalized because a conflict of binding
would occur between an additional Ga atom at the vacancy site (triangles in figure 19) and the
side atoms.

An MD calculation based on this Ga–Si bilayer model for the n = 4 cluster was conducted
to find the positions of the atoms in the relaxed geometry. The results indicate that the six Si
adatoms are located approximately at atop sites with lateral deviations within 0.0133 nm, and
that the side and vertex Ga adatoms have about 0.015 nm lateral deviations from T4 sites. The
centre Ga atom lies highest among the Ga adatoms, and is higher than the

√
3×√

3 Ga adatoms
by about 0.111 nm. The Si atoms lie lower than the central Ga atom by about 0.020 nm. The
edge Ga adatoms (3, 4, 5, 7, 9 and 10), which are bonded with two Si adatoms and three Si
surface atoms, are higher than the

√
3 × √

3 Ga adatoms by about 0.060 nm. The vertex Ga
atoms (2, 8 and 11), which are bonded with a Si atom and three Si surface atoms, are higher
than the

√
3 × √

3 Ga adatoms by about 0.023 nm. These atomic positions are in reasonable
agreement with the STM observations of the n = 4 cluster. Specifically, the empty-state image
showed that the side and centre Ga atoms appear to be higher than the vertex Ga atoms by 0.02
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and 0.07 nm, respectively. The filled-state STM image could not resolve height differences for
the Ga adatoms, though the centre of the decamer appeared to be higher than the surrounding
atoms by 0.12 nm. Another result of the calculation worth noting concerns the absence of Si
atoms from the STM images of the n = 4 cluster. The images were acquired with a tip bias
of 2.5 V, while the fact that the orbital components for the eigenstates are within 2.5 eV above
the Fermi level shows that the components of the Si-atop-atom orbital overall are smaller than
those of the Ga atoms. Since the Ga atom is much larger than the Si atom, the contribution of
the Si adatom to the STM image might be overshadowed by surrounding Ga atoms and was
not resolved in the STM measurements.

It is straightforward to generalize the Ga–Si bilayer model for the n = 4 clusters to models
for other clusters of different sizes. According to this generalized model, the composition of
such a triangular cluster can be written as Gan(n+1)/2Sin(n−1)/2, where n is the number of Ga
atoms on its side. For n = 1, the model corresponds to the case of a single Ga atom of
the

√
3 × √

3 adatom lattice, which can be treated as a special ‘cluster’ of monomers. For
n = 2, there are three Ga atoms on the sides and one Si atom at the centre. For the cluster
of n = 3, there are six Ga atoms on the sides and three Si atoms in the interior. Due to
the lack of second-layer atoms, clusters of n = 2 and 3 should be considered as transitional
species between monolayer monomers and Ga–Si bilayer clusters. Qualitatively, the proposed
models for such transitional species are consistent with the clusters of n = 2 and 3 found
along the boundaries between degenerate domains of the

√
3 × √

3 adatom lattice, as shown
in figures 20(a) and 20(b). For n > 4, all the clusters described by this generalized model
have well-defined bilayer structures. Since clusters of n = 4, 5 or 6 are observed while the
cluster of n = 7 has never been observed, n = 6 is likely to be the upper limit for the size
of such bilayer clusters. The strain on the Ga–Si bilayer grows with the size of the clusters,
and eventually it is released by forming dislocations (domain walls) on the Ga–Si bilayer and
results in the creation of incommensurate islands.

Further theoretical support for the Ga–Si bilayer model is found in a density functional
study of the structure and stability of Gan(n+1)/2Sin(n−1)/2H3n+n(n−1)/2 clusters (n = 2, 3 and 4)
[57]. These clusters are conceived to simulate the Ga–Si bilayer model by replacing the cluster–
surface connections with Ga–H and Si–H bonds. To further check the influence of the substrate
bonding conditions on the cluster structure, 3n hydrogens of the Ga–H bonds were replaced
with SiH3 groups and the structure and stability of Gan(n+1)/2Sin(n−1)/2(SiH3)3nHn(n−1)/2

clusters were examined. The calculations were carried out using the hybrid density functional
theory with Becke’s three-parameter exchange functional [58] combined with the correlation
potential given by Lee, Yang and Parr [59] (B3LYP). The basis sets used are LANL2DZ (Los
Alamos National Laboratory effective core potential with a double-zeta basis set for valence
electrons) and 6-31G*, both available in the GAUSSIAN 98 program [60] employed in the
computations.

In general, the results of the calculation include several features that help us to
understand the properties of clusters of this type. Both Gan(n+1)/2Sin(n−1)/2H3n+n(n−1)/2 and
Gan(n+1)/2Sin(n−1)/2(SiH3)3nHn(n−1)/2 clusters (n = 2, 3 and 4) are thermodynamically stable
and have triangular shape. Their structures consist of fused non-planar Ga3Si3 hexagons with
three external Si–Ga bonds in the triangle vertices. The Si–Ga bond strength in the clusters
is estimated to be 1.74–1.83 eV. In particular, the optimized structures of Ga10Si6(SiH3)12H6

under special constraints were calculated in order to facilitate the comparison between theory
and the STM observations of the n = 4 cluster on Ga/Si(111). Twelve silicon atoms of
SiH3 groups saturating the bonds of three vertex and six edge Ga atoms were put in the same
plane forming a triangle surrounding the Ga10Si6 cluster. The Si–Si distance between them,
0.384 nm, corresponds to that in the Si(111) surface. The positions of these Si atoms were
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Figure 20. SMC of n = 2 and 3 on the Ga/Si(111) surface. (a) An empty-state image (Vt = 2.2 V,
It = 1.4 nA, size = 54.3 nm × 33.6 nm) at the boundaries between the degenerate domains of the√

3 × √
3 adatom lattice. (b) Proposed models for these clusters.

frozen during geometry optimization. The resulting structure as shown in figure 21 indicates
that the Gaedge–Gaedge distances within a hexagon are longer than the Gaedge–Gaedge distances
between different hexagons in the Ga10Si6(SiH3)12H6 under constraints.

This result is in line with the STM observations that clearly show that the distances between
Gaedge atoms within a hexagon are longer than the distances between Gaedge atoms of different
hexagons. Experimentally, the Gaedge–Gaedge distance within a hexagon is 0.58±0.02 nm and
the Gaedge–Gaedge distance for atoms in different hexagons is 0.33±0.02 nm, so the difference
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Figure 21. Geometry of the Ga10Si6(SiH3)12H6 cluster optimized with boundary constraints. In
the side view the hydrogen atoms are not shown for clarity. This figure is reproduced from [57]
with permission.

is much more drastic than in our calculations. Such drastic deformation of the hexagon shape
can be attributed to the influence of three dangling bonds on the Si(111) surface in the vicinity
of the cluster, as shown by triangles in figure 19. The dangling bonds attract the edge Ga
atoms pulling them outwards and therefore further increasing the distance between the Ga
atoms within a hexagon. Also, the attraction of Gaedge by the dangling bonds can stretch the
Gacentre–Gaedge distances (0.44 ± 0.02 nm in STM versus 0.422 nm in calculations). The side
view of the calculated (figure 21) Ga10Si6 clusters exhibits characteristics that are quite similar
to the experimental observations for the n = 4 cluster (figure 5). The central Ga atom lies
0.052 nm above the Si3 plane made by Siedge; also Gavert and Gaedge are positioned somewhat
below this plane. This also agrees with experimental observations that Gacentre has the highest
position as compared with Gavert and Gaedge which lie at nearly the same level as surrounding
silicon atoms. Overall, the calculations enhance our confidence in the Ga–Si bilayer model
for the SMC in the Ga/Si(111) system.

4. Effects of SMC on cluster size distribution

The existence of magic clusters in a system modifies the nucleation and cluster growth kinetics
and leads to a cluster size distribution different from that predicted by the classical nucleation
theory. One of the most important concepts of the theory [61, 62] is the existence of a critical
cluster size (ic). This assumes that clusters of size i > ic tend to grow rather than decay,
whereas for i < ic decay is more probable. If local equilibrium can be established in a system,
then, on the basis of the ‘detailed balance’ required by the local equilibrium, the concentration
of the subcritical clusters can be approximately described by the Walton relation [63]. In terms
of the thermodynamic free energy, ic corresponds to the maximum in the dependence of the
free energy on the cluster size, as shown by the continuous line in figure 22. For 2D clusters
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Figure 22. The typical Gibbs free energy as a function of the size of 2D clusters. The dashed line
shows the effect of the magic size on the free energy.

of similar shapes on a surface, such a general behaviour of the free energy can be derived from
the following equation:

�G(i) = −i[�µ− (γs + γ ∗ − γa) 2/3] + i1/2X (1)

where �µ is the supersaturation, γs and γa are surface free energies of the substrate and
adsorbate respectively, γ ∗ is the free energy of the interface between the substrate and the
adsorbate,  is the atomic volume of the adsorbate and X is a parameter depending on the
edge energy of the cluster [61]. It is be noted that the critical clusters are actually unstable
because of their tendency to either grow or shrink in size. According to equation (1), the
critical cluster size is

ic = X2/{4[�µ− (γs + γ ∗ − γa) 2/3]2} �µ > (γs + γ ∗ − γa) 2/3. (2)

It is important to bear in mind that the above macroscopic thermodynamic quantities (�µ,
γs , γa and X) gradually lose their meanings as the size of the clusters reduces. It is not clear
whether such macroscopic quantities can be adapted for describing clusters with less than a
few hundred atoms. However, for pedagogic convenience, it is helpful to use them to convey
the concepts.

Qualitatively, the existence of magic sizes modifies the generally smooth behaviour of
the free-energy curve and creates local minima as shown schematically by the dashed lines
in figure 22. An important quantitative difference between ic and im is that the former is a
local maximum while the latter is a local minimum. In principle, the existence of such a local
minimum provides a thermodynamic means for controlling the particle size distribution. In
practice, however, both the depth and position of the minimum (i.e.�Gm and im in figure 22)
need to be considered carefully before the magic size effect can be effectively used for
controlling the cluster size distribution. Obviously, the deeper the minimum is, the easier
the control and the narrower the distribution.

For a given �Gm, two types of control strategy can be developed based on the relation-
ship between im and ic. For im < ic, the local equilibrium condition and therefore the Walton
relation automatically translate the local free-energy minimum at i = im into a local maximum
in the cluster size distribution. In principle, such an ‘equilibrium’ approach can be achieved
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by carefully controlling the supersaturation (�µ in equation (2)) and substrate temperature to
set im < ic. This will ensure that the size distribution of all the subcritical clusters, including
the SMC, follows Walton’s relation at least approximately. Assuming that the clusters remain
in their ground states and the monomers dominate the system, according to Walton’s relation
the number of i-mers Ni (i < ic) on a surface as a function of their binding energies Ei is

Ni/N0 = (N1/N0)
i exp(Ei/kT ) (3)

where N0, k and T are the number of adsorption sites, Boltzmann constant and substrate
temperature respectively. Equation (3) is subject to the normalization condition

∑
iNi/N0 = θ ∼= N1/N0

where θ (0 < θ < 1) is the total coverage of the adsorbate. In many material systems, the
binding energies of adsorbed clusters approach a linear function of i for i � i0, e.g. that of
Agi on Ag(100) as shown in figure 17. For such systems,

Ei = Ei0 +�Eb(i − i0) i > i0 (4)

where�Eb is the binding energy for a monomer binding to a larger cluster. Inserting equation
(4) into equation (3) and taking the logarithm of both sides leads to

ln(Ni/N0) = i[ln(N1/N0) +�Eb/kT )] + (Ei0 − i0�Eb). (5)

When the term inside the square brackets of equation (5) is positive, Ni/N0 grows exp-
onentially with cluster size i. Therefore, for given �Eb, there is a fairly sharp ‘condens-
ation’ transition temperature at Tc

∼= −�Eb/[k ln(N1/N0)], below which the binding energy
dominates the entropy effect and all the adatoms tend to aggregate into a single cluster. (It is
to be noted that Tc depends explicitly on N1/N0, which in turn depends on the total adsorbate
coverage through the normalization condition

∑
iNi/N0 = θ . Therefore for given θ and�Eb

the exact ‘condensation’ temperature can only be determined if all the Ei are known.) We see
from the above arguments that to use such an ‘equilibrium’ approach for controlling the cluster
size distribution, it is necessary to first keep the substrate temperature above Tc, then quench
the system to freeze the ‘equilibrium’ cluster size distribution. In such an ideal situation, it is
straightforward to quantitatively translate a set of Ei into the corresponding size distribution.

For a typical metal/metal system, �Eb is of the order of hundreds of meV, e.g. �Eb =
∼0.4 eV for Ag clusters on Ag(100) according to the result of the calculation shown in figure 17
[50]; therefore the Tc are very high for high adsorbate coverage. Just to give some rough idea of
the magnitude of Tc and its dependence on θ as well as the effect of magic size, we convert the
calculated binding energies of Ag on Ag(100) into the corresponding cluster size distribution.
Figures 23(a) and 24(b) show the distribution for θ = 0.1, T = 1345 K (60 K higher than
the corresponding Tc) and θ = 0.001, T = 690 K (20 K higher than the corresponding Tc)
respectively. These estimates indicate that, for metal/metal systems, if the shell closure for
some magic size is of the order of a few tens of meV, it is unlikely that the magic size effect
can be effectively used in the ‘equilibrium’ approach for creating clusters with very narrow
size distribution.

For im > ic, the existence of im could be, in principle, exploited to modify the cluster
growth processes and reduce the cluster size dispersion. Specifically, such a ‘kinetic’ approach
involves using the growth barrier between�Gm and�Gm+1 to reduce or even stop the cluster
growth. In most thin-film deposition conditions, the typical combination of low temperature
and high flux render the supersaturation so large that ic is usually extremely small (ic = 1 or
even 0). Therefore, random nucleation and cluster growth take place simultaneously, leading to
a broad and almost flat size distribution ranging from monomers to some large clusters of sizes
depending on the growth time. Ideally, it would be possible to take advantage of the growth
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Figure 23. Ag cluster distributions for (a) θ = 0.1, T = 1345 K and (b) θ = 0.013, T = 690 K,
which are estimated from Walton’s relation on the basis of the cluster binding energies predicted
in [50].

barrier between �Gm and �Gm+1 to stop the growth process at i = im, provided the barrier
is high enough. In practice, the barrier heights for most SMC are not likely to be very high.
Therefore the challenge is to control the deposition process such that the number of mutually
interacting adatoms in any local area is not too much larger than im at any time. This would
reduce the chance of formation of larger clusters, which are more stable thermodynamically.

One of the schemes for controlling the local concentration of adatoms is that of taking
advantage of the periodic or quasi-periodic potential barriers that usually exist on a crystal
surface to automatically limit the number of adatoms in a unit cell. With the help of such an
upper limit on the local concentration of adatoms, the magic size effect can be exploited more
effectively. In fact, such self-organized growth of periodic or quasi-periodic nanostructure
arrays with some upper limit on the size distribution on surfaces has been demonstrated in a
few systems [12, 64, 65]. By pushing the coverage towards to the corresponding upper limit, it
is also possible to use the similar potential barriers provided by the surface as a growth kinetic
barrier to squeeze the size dispersion into a narrow range within the upper limit. Since the size
distributions of clusters in these systems also exhibit a pronounced peak at a certain size, it is
helpful to try to discern the qualitative difference between these ‘maximized’ clusters and the
magic clusters. Figures 24(a) and 24(b) show schematically the free energy as a function of
cluster size for a system with some magic size at i = m and that at a ‘maximized’ size per unit
cell, also at i = m, respectively. A clear distinction between these two types of cluster is that
the former corresponds to a deep free-energy minimum at i = m while the latter corresponds
to a sudden drastic increase at i = m + 1.

We see from the above analysis that there should exist some systems, at least in principle,
whose clusters have a magic size at i = m while the periodic surface potential barriers set
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Figure 24. Schematic diagrams showing the free energy as a function of cluster size for (a) a system
with a magic size at i = m, (b) a system with a growth barrier at i = m + 1, (c) a hypothetical
system with a magic size at i = m and a growth barrier at i = m + 1.

an upper limit for the cluster size at i = m + 1, as shown schematically in figure 24(c).
Such idealized hypothetical combinations of magic and ‘maximized’ size effects would
provide a more effective pathway to creating clusters with extremely narrow size distribution.
Apparently, the effectiveness of this approach depends primarily on the strength of the shell
closure, i.e. the depth of the free-energy curve at i = m, as well as the height of the barrier
between i = m andm+1. For example, we are unlikely to find such a pathway on a metal/metal
system because of the relative weak closure in such magic clusters, as explained previously.
In retrospect, this is consistent with the fact that all of the reported SMCs were observed on
semiconductor rather than metal surfaces.

5. Conclusions

The research on SMC is at a very early stage of development. Only three systems with SMC
have been identified experimentally, and the theory of SMC remains very rudimentary. We
have reviewed the highlights of the experiments with some emphasis on their implications
for the fabrication of monodispersed nanostructures. The enhanced stability of SMC can,
at least in principle, provide a pathway to controlling the cluster formation process in some
selected systems and reducing their cluster size dispersions. The effectiveness of such an
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approach depends on the strength of the shell closure at the magic size, which is likely to be
weaker on metal surfaces than on semiconductor surfaces. Further experimental and theoretical
research on SMC is needed not only to provide fundamental understanding of these unusual
self-organized nanostructures with well-defined size and atomic structure but also to pave the
way for the exploitation of their quantum properties.
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Note added in proof. The nucleation and growth of Ag clusters on the Pt(111) surface was studied using the molecular
dynamics method in [66]. The study found that, at low temperature (400 K) and low coverage (0.1 ML), the cluster
size distribution showed apparent magic numbers at i = 7 and 10. However, to our knowledge, such magic clusters
have not been observed in this material system to date.
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